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Diffractive beam parameters of LP01 mode of fiber
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The diffractive beam parameters of LP01 mode of fiber are analyzed in detail. Based on solving linear
equations, two formulas for two kinds of mode-field radii as functions of normalized frequency are presented,
and relations between angular radius of far-field divergence, beam propagation factor, and normalized
frequency are given. Numerical calculation indicates that the maximal relative error is smaller than 1%
within a reasonable parameter range.
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The mode-field radius is closely related to various
transmission characteristics, such as splice loss, micro-
bending loss, two waveguides and source-to-fiber cou-
pling efficiency, and so on[1−4]. Thus, it is always a
research focus[5−7]. However, beam parameters include
mode-field radius in the near-field, angular radius of far-
field divergence, and beam propagation factor referring
to International Organization for Standardization (ISO)
11146-1:2005[8]. Thus, the other two parameters, angu-
lar radius of far-field divergence and beam propagation
factor, are also very important. But researches on them
are often neglected.

As for circular-symmetric single-mode fiber, Pe-
termann proposed two well-known mode-field radius
definitions based on the near-field second moment and
differential operator[9,10]. The angular radius of far-field
divergence can also be seen as two types according to
the two definitions of mode-field radius. Beam propaga-
tion factor, which was introduced by Siegman[11], is the
evaluation criteria for optical beam and still a research
interest[12−14]. As for diffractive beam of LP01 mode
of circular-symmetric step refractive index fiber, the re-
lation among beam parameters is presented in Ref. [5],
and the formula of each of beam parameters as function
of normalized standing wave parameter and normalized
evanescent wave parameter has been derived.

Because of the characteristic of normalized frequency
itself, relation between beam parameters and normalized
frequency is investigated widely for the convenience of
analysis and calculation. In spite of that, accurate cal-
culating expressions of beam parameters as functions of
normalized frequency are not found yet. Only some ap-
proximate formulas for mode-field radius as functions of
normalized frequency are presented and all of them are
based on mathematical modeling, but their precision is
not perfect. For example, an approximation of mode-
field radius presented by Marcuse[15] is used very often.
However, our research indicates that it is not accurate
enough. Furthermore, equations of angular radius of far-
field divergence and beam propagation factor as func-
tions of normalized frequency have not been reported yet.

In this letter, the relation between beam parameters

and normalized frequency is analyzed in detail with nu-
merical calculation. Two more accurate formulas for two
kinds of mode-field radii as functions of normalized fre-
quency are derived. Furthermore, the relations among
angular radius of far-field divergence, beam propagation
factor, and normalized frequency are presented based on
solving linear equations. These conclusions have impor-
tant meaning in practical applications.

For diffractive beam of LP01 mode of circular-
symmetric step refractive index fiber, the second moment
and differential operator mode-field radius are respec-
tively expressed as[5]
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where U = a[(k0n1)
2−β2]1/2 and W = a[β2−(k0n2)

2]1/2

are the normalized standing wave parameter and the nor-
malized evanescent wave parameter, respectively, k0 =
2π/λ is the wave number in vacuum, λ is the wavelength
of electromagnetic wave in vacuum, β is the propagation
constant, a is the radius of core layer, n1 and n2 are the
refractive indices of core and cladding, respectively.

For convenience, Marcuse proposed a well-known ap-
proximation for mode-field radius as a function of nor-
malized frequency from least mean square fitting of a
Gaussian function to the actual mode field[15]:

ωM = a[0.65 + 1.619V −3/2 + 2.879V −6], (3)

where V is the normalized frequency. For comparison,
the results obtained from Eqs. (1) and (3) are given in
Fig. 1. We can clearly see that gaps between them are
significant. Although Eq. (3) is convenient for calcula-
tion, it is not enough accurate, because it is introduced
based on Gaussian approximation.

In view of this, an approach of solving linear equations
is presented based on the mathematical model as

y = A +
B

x3/2
+

C

x6
, (4)
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Fig. 1. Relation between the second moment mode-field ra-
dius ωSM and normalized frequency V .

where A, B, and C are coefficients. In order to solve
Eq. (4), we take three values of x into account only and
assume that they are x1, x2, and x3 respectively; ac-
crodingly, three values of y1, y2, and y3 are taken for y.
Consequently, Eq. (4) can be translated into matrix form
as
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, (5)

and coefficients A, B, and C can be obtained by solving
the matrix function.

We set V as 1.6013, 2.2366, and 3.9276, respectively,
and then ωSM takes the values of 1.7142a, 1.1652a, and
0.8665a accordingly from Eq. (1). Substituting these
data into Eq. (5) and through solving linear equations,
we can obtain

ω′

SM = a

[

0.6685 +
1.5304

V 3/2
+

4.8955

V 6

]

. (6)

The results obtained from Eq. (6) are shown as the dot-
ted line in Fig. 1. It is obviously in agreement with the
solid line. The relative error is introduced for further
explanation,

δ =
α − γ

α
× 100%, (7)

where α refers to ωSM, ωDO, θSM, θDO, and M2 respec-
tively, γ depends on ω′

SM, ω′

DO, θ′SM, θ′DO, and M2′ ac-
cordingly.

Further study shows that relative error between ωSM

and ω′

SM fluctuates with increasing normalized frequency.
When 1.50 < V < 5.67, the maximal relative error sat-
isfies |δmax| < 1%. Therefore, the accuracy of Eq. (6)
is high and can be used to calculate the second moment
mode-field radius.

Through a similar procedure, let V = 1.1074, 1.6625,
and 3.7202 separately, then ωDO = 2.9539a, 1.4899a, and
0.8644a correspondingly according to Eq. (2). Substitu-
tion of the data into Eq. (5) yields

ω′

DO = a

[
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]

. (8)

Numerical data prove that the relative error between
ωDO and ω′

DO varies with the increase of normalized fre-
quency, but |δ| varies within 1% as V changes from 1.04

to 11.13 all the same. The result reveals that Eq. (8) also
has high accuracy.

The two kinds of angular radius of far-field divergence
for diffractive beam of LP01 mode of circular-symmetric
fiber, that is, the second moment and differential opera-
tor angular radii of far-field divergence, are as functions
of U and W under paraxial approximation[5]:
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, (9)
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There are not accurate relations between these two
parameters and normalized frequency. In view of this,
the method mentioned above is taken based on another
mathematical model[4]:

y = A +
B√
x

+
C

x3
+

D

x5
, (11)

where A, B, C, and D are coefficients also. All the same,
in order to obtain the coefficients, four values of x, x1,
x2, x3, and x4, must be taken into account, and y takes
y1, y2, y3, and y4 accordingly. Substitution of these data
into Eq. (11) yields a matrix function as
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The coefficients A, B, C, and D can be obtained by solv-
ing the matrix function.

We suppose that V takes 1.6040, 2.0690, 3.4420,
and 5.3960, respectively, then θSM is 1.2869/(ka),
1.6575/(ka), 2.2415/(ka), and 2.6077/(ka) accordingly
based on Eq. (9). Substituting V and θSM into Eq. (12)
and solving linear algebraic equations, the second mo-
ment angular radius of far-field divergence as function of
normalized frequency is obtained:

θ′SM =
1

ka

[

3.9701− 3.1422√
V

− 1.5859

V 3
+
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V 5

]

. (13)

In order to explain the accuracy, the results given in
terms of Eq. (9) is shown in Fig. 2 as the solid line. The
results obtained from Eq. (13) are also shown in Fig. 2

Fig. 2. Relation between second moment angular radius of
far-field divergence θSM and normalized frequency V .
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as pentagrams and it is conspicuous that they agree with
the solid line well.

Further study manifests that the relative error be-
tween θSM and θ′SM fluctuates with changing normal-
ized frequency, while if the normalized frequency satisfies
1.56 < V < 6.695, the maximal relative error |δ| is always
within 0.4%.

As for the differential operator angular radius of far-
field divergence, suppose that V = 1.5894, 2.0708,
3.3173, and 5.4158, consequently, θDO = 1.1530/(ka),
1.6030/(ka), 2.1691/(ka), and 2.5087/(ka) correspond-
ingly by Eq. (10). Then the relation between θDO and V
can be presented based on Eq. (12) as

θ′DO =
1
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[

3.4470− 2.1944√
V

− 4.1856

V 3
+

4.6564

V 5

]

. (14)

All the same, numerical calculation verifies that the
relative error between θDO and θ′DO varies also with the
increasing normalized frequency, however, when 1.54 <
V < 7.32, the maximal error |δmax| < 0.5%. Numerical
data also support the correctness of Eq. (14).

Under the condition of paraxial approximation, beam
propagation factor that is defined by the second moment
method can be expressed as[11]

M2 =
πωSMθSM

λ
. (15)

With regard to diffractive beam of LP01 mode of fiber,
it is based on normalized standing wave parameter and
normalized evanescent wave parameter also[5]:
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It is crucial to give a relation between M2 and V . Con-
sidering that V = 1.5610, 2.2350, 3.7510, and 5.4840 for
example, then M2 = 1.1114, 1.0259, 1.0212, and 1.0413
can be obtained based on Eq. (16). Thus, after substi-
tuting the data of V and M2 into Eq. (12) and solving
linear equations, beam propagation factor as function of
normalized frequency can be given as

M2′ = 1.1844 − 0.3474√
V

+
0.8669

V 3
− 0.2121

V 5
. (17)

To show the accuracy of Eq. (17), the results obtained
by Eqs. (16) and (17) are shown in Fig. 3. We can draw
an conclusion that the results from Eqs. (17) are in ex-
cellent agreement with that from Eqs. (16).

Further survey illuminates that relative error between
M2 and M2′ varies with the increase of normalized fre-
quency. On the other hand, |δ| varies within 0.1% as V
changes from 1.16 to 7.17. Obviously, these numerical
results show that the accuracy of Eq. (17) is very good.

Fig. 3. Beam propagation factor M
2 as function of normal-

ized frequency V .

In conclusion, the mode-field radius, the angular ra-
dius of far-field divergence, and the beam propagation
factor are investigated numerically. The equations of
beam parameters as functions of normalized frequency
are given. Numerical calculation proves that the equa-
tions have high accuracy and the maximal relative error
is always smaller than 1% within a reasonable parameter
range. These conclusions may provide theoretical sup-
port for analyzing beam parameters quickly in practical
applications.
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